
Two classes of neuronal architectures dominate in the ongoing
debate on the nature of computing by nervous systems. The first is a
predominantly feedforward architecture, in which local interactions
among neurons within each processing stage play a less influential
role compared with the drive of the input to that stage. The second
class is a recurrent  network architecture, in  which the local
interactions among neighboring neurons dominate the dynamics of
neuronal activity so that the input acts only to bias or seed the
state of the network. The study of sensorimotor networks, however,
serves to highlight a third class of architectures, which is neither
feedforward nor locally recurrent and where computations depend
on large-scale feedback loops. Findings that have emerged from our
laboratories and those of our colleagues suggest that the vibrissa
sensorimotor system is involved in such closed-loop computations.
In particular, single unit responses from vibrissa sensory and motor
areas show generic signatures of phase-sensitive detection and
control at the level of thalamocortical and corticocortical loops.
These loops are likely to be components within a greater closed-loop
vibrissa sensorimotor system, which optimizes sensory processing.

Introduction
Information f lows into the brain in a feedforward manner from

the sensory neurons up through brainstem and thalamic nuclei

and into the cortex. This feedforward organization allows

successive transformations of information and generation of

internal representations (Rumelhart and McClelland, 1986).

However, the brain also contains an enormous amount of re-

current and feedback connections at various levels. The possible

function of recurrent connections, i.e. connections between

neurons at the same level of processing, has been intensively

investigated. One of the more attractive suggestions for such a

function has come from analogies with the statistical mechanics

of many particle systems: recurrent networks could function as

associative networks for memory (Hopfield, 1982; Amit, 1989),

as well as continuous attractors for sensory coding (Ben-Yishai

et al., 1995) or motor control (Seung, 1996). These networks, in

their most basic form, are largely homogeneous so that all

neurons participating in such a network have a similar role in

computation.

Feedforward and recurrent computation schemes can be

reconciled by viewing information as being passed from one

processing station to another in a feedforward manner and

processed at each station by recurrent networks (Fig. 1a).

However, the description of brain architecture is not complete

without inclusion of its third major component — large-scale

feedback connections. Feedback connections, which feed the

output of the receiving areas back to the transmitting areas,

occur at all levels (Fig. 1b). Cortico-thalamic feedback connec-

tions are perhaps the most intensively studied example of this

kind. Feedback connections, however, occur not only between

cortex and thalamic nuclei, but also between cortex and

brainstem, between cortical areas that are connected via

feedforward connections, and from motor output nuclei back to

the cortex; see Kleinfeld et al. (Kleinfeld et al., 1999) for a

review on the vibrissa sensorimotor system.

About 50 years ago, the pioneering control theorist Norbert

Wiener suggested that some basic operations of the nervous

system are based on servo loops (Wiener, 1949). Servo loops

are systems whose aim is to keep an output variable within a

predetermined range. These loops use feedback to determine

the actual state of the output variable and a comparator circuit to

compare this value with the target value. For example, keeping a

stick upright using one finger requires a servo operation. A

servo loop is a particular type of closed-loop system. In general,

closed-loop systems can be used to accomplish various decoding,

transformation and control tasks. Such tasks are routinely

performed in the brain.

The architecture of closed-loop systems lies between that

of feedforward and recurrent networks. Like in feedforward

networks, but unlike in recurrent networks, the f low of infor-

mation in closed-loop systems is well delineated. Like in recurrent

networks, but unlike in feedforward networks, information

f lows in both directions, i.e. from input to output and back.

Thus, closed-loop circuits provide a substrate for computations

that cannot be done with purely feedforward or recurrent con-

figurations. One example is iterative transformations from one

set of neuronal variables to another, as may occur in the encoding

and processing of sensory inputs.

Closed-loop dynamics can be found at all levels of neuronal

function. At the molecular level, the activity of a biochemical

process can be suppressed (negative feedback) or enhanced

(positive feedback) by the end product of that process. Similarly,

at the cellular level, the opening of ion channels is a function of

the membrane potential, which in turn is affected by ion channel

opening. At the circuit level, the activity of individual neurons

inf luences neighboring cells, whose activity in turn modulates

that of the original cell. At the system level, e.g. the level of

cortical areas and sub-cortical nuclei, each neuronal circuit

affects several other circuits whose output ultimately feeds back

on the original circuit. At the behavioral level, sensory input

guides the motor response, which in turn updates the input to

the sensory system. We focus here on the circuit, system and

behavioral levels.

Computations Performed by Neuronal Closed Loops
The operation of neuronal closed loops at various levels can be

considered from either homeostatic or computational points of

view. All closed loops have set-points at whiche the values of

their state variables are stable. Thus, feedback loops provide

a mechanism for maintaining neuronal variables within a par-

ticular range of values. This  can be termed a homeostatic

function. On the other hand, since the feedback loops compute

changes in the state variables to counteract changes in the
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external world, the change in state variables constitutes a

representation of change in the outside world. As an example,

we consider Wiener’s description of the sensorimotor control of

a stick with one finger. The state variables are the angle of the

stick and the position (angle and pivot location) of the finger.

When the stick leaves a set-point as a result of a change in local

air pressure, the sensorimotor system will converge to a new

set-point in which the position of the finger is different. The end

result, from the homeostatic point of view, is that equilibrium is

re-established. From the computational point of view, the new

set-point is an internal representation of the new conditions, e.g.

the new local air pressure, in the external world. (We note that

the representation of perturbation by state variables may be

dimensionally under- or over-determined and possibly not unique.)

This internal representation is ‘computed’ by the closed-loop

mechanism.

Closed loops provide an elegant solution to control problems

that involve different types of variables, such as the control of

mechanical variables by neuronal variables. To illustrate closed-

loop control, we will consider two schemes that are imple-

mented by a ‘low-level’ loop, the stretch-ref lex loop, under

‘high-level’ descending control.

Examples of Motor Control by Closed Loops
A skeletal joint consists of muscles, arranged as pairs with

opposing directions of torque, that quasistatically maintain the

joint at a desired angle under the presence of a load (Fig. 2a). The

pairs of muscles are arranged as synergists, i.e. muscles that close

the joint, and antagonists, i.e. muscles that open the joint. There

are two forms of feedback sensors at a joint. The first are

spindles, which encode the degree of muscle-stretch. To the

extent that the angle is proportional to the stretch, the spindles

are reporters of the angle of the joint. The second are Golgi

tendons, which report the force produced by the muscle or,

equivalently, the torque. Both of these receptors form a large-

scale feedback path from the joint back to the motor neurons

(Fig.  2b,c). For simplicity, we will consider only positional

feedback.

A first feedback scheme considers the control of the absolute

angle of a joint. This control scheme makes use of a descending

command (θ0 in Fig. 2b), generated by higher neuronal circuits.

The absolute position of the joint (θ in Fig. 2b), as encoded by

the spindles, is compared with the command (∆ operation in

Fig. 2b) and used to generate a  control  signal of the form

dθ/dt = G(θ–θ0). This signal, in turn, drives the synergistic motor

neurons and its negated form (mediated by inhibitory inter-

neurons) drives antagonist motor neurons. Under steady-state

conditions, the two muscle groups integrate the control signal.

For a sufficiently large gain (G in Fig. 2b), the angle of the joint

will converge on the desired angle, i.e. θ ≈ θ0.

A second feedback scheme, which is of relevance to our

discussion on the vibrissa sensorimotor system, considers the

periodic modulation of the angle of a joint. This control scheme

makes use of a descending signal that oscillates in time (cos2πf0t
in Fig. 2c). The position of the joint (cos[2πf0t + φ] in Fig. 2c) is

mixed with the control signal, as could occur by neurons or small

networks of neurons that use their threshold properties to

multiply their inputs [X in Fig. 2b; see Ahissar (Ahissar, 1998)

and Ahrens et al. (Ahrens et al., 2002)]. The spectrum of the

mixed signal contains the difference between the desired

frequency and the actual frequency (f – f0), as well as the sum of

these frequencies. The low (difference) frequencies are

extracted from the mixed signal by the low-pass filtering

properties of the involved neurons. The final signal contains a

constant (Gsinφ in Fig. 2c), as well as a term, which for small

frequency differences (i.e. f ≈ f0) is proportional to the phase

slippage [O{(f – f0)t} in Fig. 2c]. This final signal is used to drive

a local oscillator in the spinal cord (∼ in Fig. 2c), for which the

oscillation frequency is a monotonic function of the input. For

open-loop gains (i.e. accumulated gain along the loop) around 1,

the frequency of the local oscillator will be driven to match

that of the control signal, so that under steady-state conditions

f = f0 and the final signal is a constant with no phase slippage.

Thus there  is a constant phase difference, φ, between the

reference and spinal oscillators, which is a monotonic function

of (f – f0)/G. By combining feedback schemes for both position

and oscillation control, a joint can oscillate around a desired

position, as is required for certain motor tasks, such as walking.

Transformations from one variable to another are required

not only for motor control, but also for sensory processing.

Perceived entities are composed of a variety of physical variables

of different types and dimensions. These physical variables should

be transformed to neuronal variables. Hence, sensory acquisi-

tion and processing must employ a variety of transformations.

The first transformations occur already at the level of the sensory

receptors during transduction. These transformations are imple-

mented by a variety of closed loops, mostly at the molecular and

Figure 1. Diagram of generalized neuronal architectures. (a) An architecture that is a
mixture of feedforward and recurrent connections. The flow of information between
populations of neurons is largely feedforward and, within populations, largely recurrent.
The system as a whole is closed only through the outside world, e.g. sensations brought
about by changes in the position of an actuator (e.g. a limb). Thus, feedback is
predominantly through the direct sensation of motor output, through proprioception, or
through the effect of the motor movement on the outside world. (b) An architecture that
is a mixture of feedforward, recurrent and feedback connections. The flow of
information is both feedforward and feedback along closed loops. Neuronal closed loops
are illustrated by the gray-colored neuronal elements. In this case there is substantial
feedback, both through intrinsic neuronal connections and through the outside world.
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cellular levels. Later transformations usually transform feature-

based codes to more abstract codes that are used for integration

and motor control.

Closed-loop Computations in the Vibrissa Sensorimotor System
Rats whisk as they probe their immediate environment for the

presence of objects, obstacles, or food. Animals can also be

trained to whisk in air, in the absence of tactile or visual input.

We refer to this as ‘free whisking’. It consists of large back-

and-forth movements that subtend as much as 100° (Fig. 3a) and

persist for bouts up to 4 s. Interestingly, animals will whisk at

essentially a constant frequency over the entire period of the

bout, as seen in the rectified mystatial electromyogram (EMG)

(Fig. 3b), a measure of vibrissa position. They can then whisk

again at the same or a different frequency, but again hold the

frequency constant (Fig. 3c) (Berg and Kleinfeld, 2002). Thus,

whisking appears to be driven by an accurate pacemaker, with a

frequency that varies between whisking bouts, but that is

constant within a bout, or alternatively, different pacemakers

control whisking at different bouts. The distribution of the

whisking frequencies generally lies between 5 and 15 Hz

(Fig. 3d) and the spectral purity of the whisking is independent

of frequency. The accuracy of whisking within each bout is

suggestive of phase-sensitive detection as a decoding scheme of

vibrissae position (Kleinfeld et al., 1999). This decoding can, in

principle, be accomplished by open or closed loops (Ahissar,

1995, 1998; Ahissar et al., 1997).

The vibrissa sensorimotor system contains several circuits,

parallel and embedded in each other, that close the loop be-

tween the sensory receptors that are activated by vibrissa

def lections and the muscles that move the vibrissae (Kleinfeld et

al., 1999). This system also contains feedback loops that enclose

various processing stations (i.e. sensory thalamus and cortex)

within closed anatomical loops. Is local computation between

these stations dominated by feedforward or closed-loop dynam-

ics? With feedforward processing, sensory signals should propa-

gate to the cortex via brainstem and thalamic ‘relay’ neurons.

Thus, vibrissa-locked activities of somatosensory cortical neurons

should lag whisking activity. However, during epochs of vibrissa-

locked oscillatory activity in freely behaving rats (Fee et al.,

1997), as well as in awake restrained rats (Brecht and Sakmann,

2001), cortical neurons show a full range of phase relations

relative to the angle of the vibrissae. Further, in awake rats, the

phase of thalamic oscillatory activity lags the phase of both

brainstem and cortical activity (Nicolelis et al., 1995). While

inconsistent with a feedforward scheme, these observations are

consistent with a closed-loop computation scheme, in which

cortical oscillatory activity is not driven by sensory events but is

generated independently in the cortex and is used to decode, or

to ‘measure’, the input periodicity.

The existence of a central mechanism that ‘measures’ the

input periodicity was proposed by Mountcastle and colleagues

in the 1960s to explain their observations from the primate

somatosensory system (Talbot et al., 1968). The possibility that

Figure 2. Two possible aspects of feedback control in the spinal innervation of the muscles in a joint. (a) Diagram of the spinal circuit that incorporates feedback from muscle spindles,
which code displacement. The motor neuron output is to both synergistic as well as antagonistic muscles. Feedback via spindles in the synergistic muscle fibers reports a monotonic
function of the joint angle. Descending input (not shown) occurs onto both motor neurons and interneurons. Figure abstracted from Kandel, Schwartz and Jessel (Gordon, 1991). (b)
Functional scheme for plausible feedback control of set-point positioning. Feedback is via proprioception. Elements of the circuit are labeled with their function, i.e. +, ∆ and G refer
to interneurons with excitatory output that are used for unity gain, differencing and gain, respectively, and ‘–’ refers to interneurons with inhibitory output. The muscles are taken to
perform temporal integration of their inputs and the joint to perform a sum function, Σ, of the torques produced by the synergistic and antagonistic muscles. (c) Functional scheme
for possible feedback control of rhythmic output. This scheme illustrates the architecture of a phase-locked loop for rhythmic output generation. An input-controlled internal oscillator,
denoted by ‘∼ ’, is locked to the desired frequency, f0. Elements of the circuit are labeled with their function, as in part (a), with the addition that ‘X’ refers to the multiplication or mixing
of two signals and the boxed Bode plot refers to the low-pass filtering of the signal. The basic forms of the sinusoidal signals are further indicated. At lock, the actual frequency, f,
equals the desired frequency, f0, and the input to the controlled oscillator is a constant drive term equal to Gcosφ.
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such a mechanism exists in rats was investigated by testing

the predictions of several potential mechanisms in anesthetized

rats (Ahissar et al., 1997, 2000, 2001a; Sosnik et al., 2001) and

is reviewed elsewhere (Ahissar and Arieli, 2001; Ahissar and

Zacksenhouse, 2001). The results of these experiments suggest

that one of the two major thalamocortical systems, the para-

lemniscal system, contains many parallel loops that function as

phase-locked loops (PLLs). A PLL is an algorithm for temporal

processing with periodical signals, discovered by electrical

engineers in the 1930s (Bellescize, 1932) and is considered to

be an optimal temporal decoder. It can be implemented by

software, electronic circuits (Gardner, 1979), single neurons

(Hoppensteadt, 1986), or neuronal circuits (Ahissar and Vaadia,

1990; Ahissar, 1998). The elegance of the PLL emerges mainly

from its adaptive operation, which is a direct outcome of its

closed-loop design (Gardner, 1979; Ahissar, 1998; Kleinfeld et

al., 1999). One implementation of a PLL was presented above to

describe motor control of the skeletal joint (Fig. 2c). Other

neuronal implementations of PLLs could, in principle, occur all

over the nervous system. In particular, a sensory PLL for

decoding vibrissal temporally encoded information could be

implemented across thalamocortical loops, by using cortical

oscillators, cortical inhibitory neurons and thalamic ‘relay’

neurons, where the last are hypothesized to function as phase

detectors (Fig. 4) (Ahissar et al., 1997; Ahissar and Arieli, 2001;

Ahissar and Zacksenhouse, 2001). For such implementations,

which consist entirely of spiking neurons, discrete-time repre-

sentations are probably more appropriate than continuous-time

representations (Ahissar, 1998). This is particularly true for the

vibrissal system, in which computations involve neurons that

fire one or few spikes per whisking cycle.

Decoding by PLLs: Theory, Predictions and Tests
In principle, a single PLL can perform temporal decoding over a

significant range of input frequencies. However, our data suggest

that many PLLs operate in parallel within the paralemniscal

thalamocortical system. The existence of many PLL circuits in

parallel is conjectured from two observations. First, neurons in

sensory (Fee et al., 1997) as well as motor cortex (Kleinfeld et

al., 2002) are locked to motion of the vibrissa over the full range

of phases, 0 to 2π, in the awake, whisking animal. Second, many

independent cortical oscillators exist in the somatosensory

cortex of anesthetized rodents, each exhibiting a different

spontaneous frequency and each oscillating independently from

the others when no sensory stimulus is applied (Ahissar et al.,

1997) [see also (Ahissar and Vaadia, 1990; Schoner et al., 1992)].

This parallel-processing scheme entails specific predictions —

predictions that emerge from the PLL equations.

The equations of a discrete form of a linear PLL (Fig. 4), in the

absence of noise, are:

Rout(n) = R – ατD(n) (1)

τD(n + 1) = τD(n) + To(n) – Ti(n + 1) (2)

where n indexes the whisking cycle, Rout(n) is the output,

measured in spike-counts, of the PLL at cycle n, R is the output

spike-count when τD = 0, α is a constant, and τD(n) is the temporal

delay between the two inputs, tosc and tbs (Fig. 4) to the phase

detector, and is given by:

τD(n) = tosc – tbs (3)

Ti(n) is the period (1/frequency) of the input, and To(n) is the

period of the oscillator. The latter period is given by

To(n) = Tc + γRout(n) (4)

where Tc is the intrinsic period of the oscillator, i.e. the period

with which the oscillator should oscillate if it would receive no

input, and γ is a constant.

At steady-state, τD(n + 1) = τD(n) and thus the PLL is locked

[To = Ti, in equation (2)] and, from equations (1) and (4),

τD = R/α + (Tc – Ti)/G (5)

where G = αγ is the ‘open-loop gain’ of the circuit.

Thus, with linear PLLs at steady-state, τD is linear with respect

to the term (Tc – Ti). The latency of the cortical oscillator (tosc –

tstim, where tstim is stimulus onset time) equals, from equation (3):

tosc – tstim = τD + (tbs – tstim) (6)

and the latency of the phase detector’s output equals

tpd – tstim = τD + (tbs – tstim) + Dpd (7)

where Dpd is the input–output delay (including conduction

delays) of the phase detector. Thus, thalamic and cortical

latencies equal τD + constant. This relationship, together with

equation (5), provides several testable predictions.

Figure 3. Fundamental aspects of free whisking. (a) Sequential videographs of a rat
whisking freely in air. The images were obtained at 60 frames/s. The rat is searching
for a food tube with its vibrissae while blindfolded. Figure from supplemental data for
Fee et al. (Fee et al., 1996). (b,c) Time-series and accompanying spectrogram of the
electromyogram (EMG) of the intrinsic muscles in the mystatial pad as an animal whisks
in air. Note the two whisking bouts, each with a different but steady whisking frequency,
as well as the period of low amplitude chewing. Data from O’Connor et al. (O’Connor et
al., 2002). (d) Distribution of whisking frequencies taken from 232 whisking epochs in
one animal. Figure derived from EMG data in O’Connor et al. (O’Connor et al., 2002).
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The first prediction is that steady-state response latencies, in

thalamus and cortex, should increase with increasing input

frequencies [fi = 1/Ti; for any given Tc, τD will increase with

decreasing Ti, see equation (5)]. This was indeed observed in the

thalamic and cortical stations of the paralemniscal system, i.e.

POm and layer 5a, respectively (A hissar et al., 2000). The

steady-state response phases of POm and layer 5a neurons

increase with the stimulus frequency (Fig. 5a). The response

phases increase not only due to the decreased stimulus period,

but also due to an explicit increase in response latencies, as

demonstrated by the distributions of onset latencies among these

neurons (Fig. 5b).

The second prediction derived from equation (5) is that, when

the input frequency is constant, the spread of thalamocortical

latencies should be determined by the spread of the intrinsic

periods (Tc) of cortical oscillators. The periods Tc cannot be

measured in vivo, since the oscillators always receive inputs as a

consequence of spontaneous activity. Nevertheless, to the extent

that the spontaneous drive is similar across different recordings,

the spread of spontaneous oscillations may provide an approx-

imation to the spread of Tc. Spontaneously oscillating neurons,

which could potentially function as oscillators in vibrissa-related

PLLs, have been previously recorded in anesthetized rats and

guinea pigs (Ahissar et al., 1997). To test the above prediction,

we re-plotted the frequency distribution of the rat oscillating

neurons as a period distribution, in the range that is relevant for

decoding whisking frequencies (Fig. 5c, black broken curve).

With the PLL scheme described above, Tc should be smaller

than the maximal decodable Ti. Thus, to cover the range of

spontaneous oscillatory periods which could be relevant for

decoding whisking frequencies, we depicted periods 20 < Tspont <

120 ms, corresponding to frequencies between ∼ 8 and 50 Hz.

Within this range, the distribution of spontaneous oscillating

periods contains a mode whose spread approximates that of

response latencies in POm and Layer 5a (Fig. 5c), as predicted

by the PLL model. This mode contains spontaneous oscillatory

Figure 4. Model of thalamocortical PLL. (a) The model circuit is a composite of independent anatomical and physiological data. The connections in the model circuit are those
anatomical connections that exist in the vibrissal thalamocortical system and are required for a PLL operation. These connections are re-plotted in black (‘Anatomical circuit’, right
panel) in the thalamocortical circuit proposed by White and Keller (White and Keller, 1987); the connections that are not essential for a PLL operation are plotted in gray. The thalamic
neurons are assumed to switch between ‘Relay’ and ‘AND gate’ modes (‘Thalamic gating’, left panel), as suggested by Sherman and Guillery (Sherman and Guillery, 1996). In relay
mode, thalamic neurons transfer the input from the brainstem ‘as is’. In AND-gate mode, thalamic neurons transfer only that portion of the input for which the timing overlaps with
the cortical feedback. The cortical feedback to the thalamus is dominated by cortical local oscillators, such as those described in earlier work (Ahissar and Vaadia, 1990; Silva et al.,
1991; Ahissar et al., 1997). The feature of the local oscillators which is critical for the PLL algorithm is the ability of these neurons, once fired, to fire again after an intrinsically
determined period. Thus, after firing a spike (or burst), they will tend to fire another spike (burst) after a given interval (Tc) even if not stimulated. This interval can be increased by
inhibition and decreased by excitation (Perkel et al., 1964; Silva et al., 1991; Ahissar et al., 1997). Connections carrying temporal coding are plotted by thin lines and those carrying
spike-count coding are plotted by thick lines. The oscillator transforms spike-count to temporal code and the phase detector transforms temporal to spike-count code. τD(n) = tosc(n)
– tbs(n) is the temporal delay between the two inputs to the POm, where tbs is the onset time of the brainstem burst, tosc is the onset time of the feedback burst and n is the index of
the whisking cycle. Rout(n) is the spike-count of the POm output. The model scheme is from earlier work (Ahissar, 1998). (b) Schematic transfer functions for a linear PLL. The thin
curve is the transfer function of the oscillator; the thick curve is the transfer function of the phase detector; γ and α are the gains of the oscillator and phase detector, respectively.
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periods between 50 and 105 ms, corresponding to frequencies

between 9.5 and 20 Hz. The striking overlap between the spread

of Tc and that of τD (Fig. 5c) could be interpreted to imply that the

hypothetical thalamocortical PLLs function near their linear

regime — equation (5).

According to the above results, temporal decoding in the

paralemniscal system is accomplished by sets of many parallel

thalamocortical PLLs, each with a different working range, i.e. a

range of input frequencies that can be decoded by that PLL. If

this is the case, then during natural whisking the spread of

cortical phases should exhibit the accumulation of the spreads of

cortical Tcs and of whisking frequencies. This is consistent with

cortical data from freely moving rats (Fee et al., 1997). Cortical

neurons phase-lock to whisking movements with different

phases (Fig. 6). While the ensemble vector has a phase of about

π/4 relative to the retracted phase of the mystacial EMG activity,

the entire population of single units cover the entire range of

possible phases (Fig. 6b). The cortical phase distribution

observed during free whisking (Fig. 6b) resembles that observed

in anesthetized rats during vibrissa stimulation at whisking-

range frequencies, i.e. frequencies between 5 and 11 Hz (Fig. 5a,

right panel, gray dots). In both cases, response phases distribute

between 0 and 2π and response magnitudes are larger at low

response phases, consistent with the PLL model.

Thus, during whisking, cortical neurons phase-lock to vibrissa

movement at different phases (Fig. 6b), perhaps based on their

specific loop affiliation. As described above, we speculate that,

for every neuron, its response phase lag depends on the intrinsic

period (Tc) of the oscillator driving the loop containing that

neuron. If this is the case, these phase lags contain information

about the whisking frequency. The same information can be

extracted from the spike-counts of cortical neurons. Both signals

are likely to be noisy at the cortical level and the system may

combine both sources of information to improve the fidelity of

the representation of the whisking frequency. To compute the

phase lag, the exact reference of whisking onset time has to be

available. This suggests a possible role for the lemniscal system,

in addition to its other functions, within this temporal decoding

scheme: the lemniscal system, which responds at a fixed latency

at all frequencies within the whisking range (Hartings and

Simons, 1998; Ahissar et al., 2001a; Sosnik et al., 2001), can

provide the required reference signal. Comparison of the out-

puts of the lemniscal and paralemniscal systems, say at layer 2/3

of the cortex (Ahissar et al., 2001a), can provide a measure of

the desired phase-lag. Further, the reference signal conveyed by

the lemniscal system might be useful in computing the contact

angle when the vibrissae touch an object during protraction.

Figure 5. Spread of latencies, phases and oscillating periods during vibrissa stimulation
in the anesthetized rat. Recordings were made from 29 units of the POm and 29 units of
layer 5a of the barrel cortex. (a) Polar plots of phases and spike-counts (per cycle) for
four stimulation frequencies (2, 5, 8 and 11 Hz; gray level decreases with frequency).
Stimulations were air-puffs to groups of vibrissae containing receptive fields of the
neurons. Radial dimension encodes spike-count per cycle and circular dimension
encodes phase (= 2π latency/stimulus period). The arrows point to the vector average
(with magnitude multiplied by four). Data are from earlier work (Ahissar et al., 2001a;
Sosnik et al., 2001). (b) Distributions of response latencies (to 0.5 of response peak) of
the same data as in (a). (c) Distributions of response latencies as in (b), plotted around
their median values for each latency (solid curves) and distribution of cortical oscillating
periods plotted around period = 70 ms (broken curve). Data of oscillating periods are
from earlier work (Ahissar et al., 1997).

Figure 6. The modulation of spiking in vibrissa S1 cortex by rhythmic whisking in air. (a)
Illustration of electromyogram (EMG) triggered spike rate. The modulation of the spike
rate shows that the output of this unit is modulated by whisking. Data are from earlier
work (Fee et al., 1997). (b) Distribution of the magnitude and phase of the spectral
coherence between cortical spiking and the mystatial EMG. The average whisking
frequency was 9 Hz, with a range of ±2 Hz. The arrows (with magnitude multiplied by
10) point to (i) the vector average and (ii) the coherence inferred from differential local
field potential (LFP) data. Note the strong correspondence between the two averaging
techniques. Data are from earlier work (Fee et al., 1997; O’Connor et al., 2002).
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Thus, an outline of the first stages of the temporal decoding

scheme can look like that depicted schematically, and in abstract

form, in Figure 7. Note that (i) the paralemniscal loop in fact

contains many loops in parallel and (ii) only lemniscal signals

that relate to this computation are depicted, ignoring other,

parallel, lemniscal processes.

Further Predictions for Thalamocortical PLLs
Critical tests of the PLL hypothesis should involve measurements

with behaving rats. If thalamocortical loops function as PLLs

during tactile exploration, it is predicted that in the exploring

rat:

1. paralemniscal (POm and layer 5a in the barrel cortex) laten-

cies should increase with increasing whisking frequencies;

2. paralemniscal spike-counts (per cycle) should decrease with

increasing whisking frequencies;

3. during protraction, contacts at more anterior positions will

be represented by larger paralemniscal spike-counts.

The last prediction depends on the actual set point of the

thalamocortical PLLs and thus is not a critical prediction

(Ahissar, 1998; Kleinfeld et al., 1999). Yet, the data collected

so far indicate thalamocortical set points for which such a

dependency is expected (Ahissar et al., 1997; Ahissar and Arieli,

2001).

Possible Alternative Mechanisms
Closed-loop mechanisms in general and PLL in particular, are

certainly  not  the only  possible mechanisms for processing

whisking-related information. Feedforward mechanisms could

also decode the temporally encoded information generated

during vibrissa movement (Ahissar, 1995;  Buonomano and

Merzenich, 1995). The data we collected, however, are incon-

sistent with such feedforward mechanisms (Ahissar and Arieli,

2001).

Another possibility is that vibrissa position is not encoded by

temporal cues. For example, different ganglion or brainstem

neurons might be associated with different phases along the

whisking path, such that the identity of the activated neuron

indicates the position (angle) of the vibrissa (a ‘labeled-line’

coding scheme). Or, alternatively, population of neurons might

encode vibrissa position in their ensemble firing rate. Unfor-

tunately, a systematic investigation of the encoding of vibrissa

position during whisking has yet to be made. The existing data

about stimulus encoding by neurons of the trigeminal ganglion

were collected during electrical stimulations of the motor nerve

(Zucker and Welker, 1969) and during passive mechanical de-

f lections of the vibrissae (Gibson and Welker, 1983; Lichtenstein

et al., 1990; Shoykhet et al., 2000). In these data, there are no

signs of a labeled-line code as described above. Yet, a population

rate code might be constructed from neurons exhibiting

directional and amplitude dependency (Zucker and Welker,

1969; Gibson and Welker, 1983; Shoykhet et al., 2000).

Sensorimotor Servo Loop
Motivated by the accumulating data presented above and by the

analogy between the vibrissa system and other sensorimotor

systems (Ahissar, 1998), we propose that the entire sensori-

motor loop of the vibrissal system functions as a servo loop,

whose controlled variables are not external, as in the case of

the stick angle in Wiener’s example, but are, rather, internal.

Unlike motor servo control, the purpose of the sensorimotor

servo control is to optimize sensory computation, much like

automatic gain control loops optimize decoding in radio

receivers. Several schemes of sensorimotor servo loops could

accomplish optimization of sensory processing. We delineate

here two such schemes.

The first servo scheme is aimed at stabilizing the whisking

Figure 7. A schematic description of early stages in vibrissal temporal decoding. The functional block diagram (a) and proposed implementation (b) of a plausible computational
scheme are depicted. The sensory input captured by the vibrissae receptors, either during whisking or external stimulation, is conveyed to the two thalamic nuclei: VPM and POm.
The loops are composed of neurons from POm and from layers 5 and 6 of S1, which together function as phase-locked loops (see Fig. 4). VPM and layer 4 neurons convey a reference
signal. Outputs of both streams are ‘mixed’ in layer 2/3 of the cortex to extract the frequency out of the phase difference.
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frequency in the presence of contact of the vibrissae with

objects. As demonstrated by the data in Figure 3, the whisking

frequency is stable during each whisking bout. A stable whisk-

ing frequency facilitates phase-sensitive sensory computation

and thus might be actively maintained by a sensory-motor servo

loop (Fig. 8a), consisting of another set of PLLs, implemented

across S1, M1 and POm. Experiments on the sensory response

of neurons in vibrissa M1 cortex in awake animals (Kleinfeld et

al., 2002) indicate that M1 neurons compute the fundamental

frequency of a complex, repetitive input. The interpretation of

this and related results could be that vibrissa S1 cortex and M1

cortex, together with the POm, are part of a PLL that extracts the

fundamental frequency of the input and maintains a stable

frequency of whisking.

Sensorimotor servo loops could also serve directly at

optimizing sensory processing, by controlling the set-points

of the sensory (thalamocortical) PLLs (Fig. 8b). Naturally, the

optimal set-point for a given loop is located at the center of its

working range, since in that condition the loop can handle the

largest input modulations (Ahissar, 1998). Thus, if vibrissal

temporal decoding were accomplished by a single thalamo-

cortical PLL, the role of the sensorimotor servo loop would be to

maintain the set-point of this PLL at the center of its working

range. Since the set-point of the PLL is determined by the average

input frequency (Ahissar, 1998), maintaining the optimal set-

point is accomplished by controlling whisking frequency. The

‘error signal’, whose value determines the motor output, should

be one of the variables composing the PLL’s set-point, namely

spike-count or latency of thalamic or cortical neurons. Of the

two, the spike-count variable is more reliable (Ahissar et al.,

2001a; Sosnik et al., 2001) and is probably more suitable for con-

trolling motor activity (Georgopoulos, 1986; Wessberg et al.,

2000).

In the real brain, closed-loop optimization is complicated by

processing in parallel channels. According to the results de-

scribed above, temporal decoding in the paralemniscal system is

accomplished by sets of many parallel thalamocortical PLLs, each

possessing a different working range. Although the working

range of any single PLL is limited (Ahissar, 1998), a collection of

PLLs, each having a slightly different working range, can decode

the entire required frequency range. However, such a scheme

poses serious challenges to the system. For example, for a given

input frequency, different PLLs will produce different output

values, depending on their Tc. Thus, for the same input, some

pools of PLLs will produce meaningful outputs while others,

which will be driven out of their working ranges, will produce

nonsense outputs. How can the readout circuit isolate the

‘proper’ PLLs, namely those PLLs whose output is relevant for

sensory computation during the performance of a given task?

A solution to this problem might be ‘built-in’ the sensorimotor

servo loop scheme. By maintaining the whisking frequency

centered on a given frequency, the servo loop in fact selects a

range of PLLs whose optimal set-points, i.e. centers of their

working ranges, are at that frequency. These ‘relevant’ PLLs will

present full range modulations of their output values while

other, ‘non-relevant’, PLLs will exhibit limited modulations due

to saturation. Both readout circuits and motor control circuits

should be able to tune to the PLLs that exhibit the largest

modulations. By this tuning, the sensorimotor servo loop

converges to its own set-point, which is thus determined by the

whisking frequency and the profile of activity modulations

across thalamocortical PLLs.

Figure 8. Possible servo-loop schemes for the vibrissa sensorimotor system. Two possible schemes are depicted; only essential components are shown for clarity. (a) Two
thalamocortical loops function as PLLs. One, composed by S1 and POm neurons, accomplishes only sensory computations (of vibrissa position and object location) and is not involved
in sensorimotor operation. The other, composed of S1, POm and M1 neurons, extracts the fundamental input frequency, a signal that is used to stabilize whisking frequency via a servo
loop. (b) One thalamocortical PLL is used for both sensory computations and control of whisking frequency within the sensory-motor servo loop.
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The set-point of the sensorimotor loop depends on the task

in hand. For example, object localization, which involves low

spatial (and thus also temporal) frequencies, should lead to

set-points optimal for low-frequency PLLs. In contrast, fine

texture analysis, which usually involves high spatial and temporal

frequencies, should lead to set-points optimal for high-frequency

PLLs.

In the above two examples, the motor variable used by the

servo loop was the whisking frequency. This is not the only

available variable for servo control. Other variables, such as

protraction velocity or amplitude, can be used as well. For

example, when scanning a textured surface, protraction velocity

(V) might be controlled to optimize the temporal frequency (f)

and compensate for changes in the texture’s spatial frequency

(SF), since f = |V| * SF. It would probably be reasonable to

assume that whisking frequency is usually the variable used to

optimize processing by paralemniscal PLLs, whereas protraction

velocity is used to optimize processing by lemniscal PLLs, if they

exist. This is because paralemniscal PLLs are tuned to whisking

frequencies, which peak near 10 Hz (Fig. 3d), whereas lemniscal

PLLs are probably tuned to higher frequencies, which are pro-

duced while scanning textures and determined by protraction

velocity.

Predictions for the Servo Loop
A major potential function of a sensorimotor servo loop is thus

to maintain optimal conditions for sensory processing (see

second example above). A straightforward prediction of such a

loop is that motor variables of whisking should depend on the

stimulus and the task at hand, in a way that optimizes sensory

processing. For example, with texture identification or discrim-

ination, whisking velocity should depend on the texture’s spatial

frequency such that the resulting temporal frequency is

maintained within the working range of the sensory PLLs.

Usually, this will require a reduction of velocity when the spatial

frequency increases and vice verse.

Another prediction of the sensorimotor servo loop is that if

sensory information is removed, by some lesion that ‘opens

the sensorimotor loop’, the motor system will not be able to

maintain a constant whisking profile against changing con-

ditions, such as changes in air pressure or object profiles.

Moreover, under these conditions, the motor system might drive

the vibrissae to whisk at one of the extreme states: either with

maximal or with minimal possible frequency.

Concluding Remarks
What is the neural code? The lack of an accepted answer to this

question seems to significantly hamper understanding of brain

operation. But is this question well-posed? Is there only one

neural code for the brain? As can be judged from the large

repertoire of potential neural codes observed during neuronal

recordings in various brain regions and in various conditions,

this does not seem to be the case. The brain does not seem to use

a single, unified neural code for all its processes. Rather, each

process, and each interaction between processing stations,

probably involves specific neural codes. Moreover, a neural

process can even convert one code to another. Thus, instead of

‘what is the neural code?’, a more relevant question for under-

standing the brain seems to be ‘what are the neural processes?’.

As Perkel and Bullock put it more than 30 years ago, ‘The

problem of neural “coding” is that of elucidating the transform-

ations of information effected by the nervous system’ (Perkel and

Bullock, 1968).

Neuronal processes that are implemented by single neurons,

such as transduction, conduction, filtering and integration, have

been described through the years. Processes implemented by

neuronal circuits have also been described. Among these are

feedforward transformations and recurrent relaxation by neural

networks, oscillations by excitatory–inhibitory loops, and motor

control by closed loops. To this repertoire we add here sensory

computation by closed loops. We suggest that a significant

portion of sensory processing is implemented by closed-loop

computations. We have shown here how thalamocortical phase-

locked loops may decode information that is encoded in time by

the rat vibrissae and how such loops could be nested within

a larger-scale sensory-motor servo loop. Similar phase-locked

loops might operate in the visual (Ahissar and Arieli, 2001) and

auditory (Ahissar et al., 2001b) systems to decode temporally

encoded information.

Much of our understanding of the operation of neural net-

works comes from physics. Similarly, understanding closed-loop

computation should benefit from engineering. Engineers

discovered that closed loops often provide extremely elegant

solutions for ‘real-world’ problems, the same kind of problems

with which living brains are routinely challenged. Yet, engin-

eered closed loops usually lack one important feature, which is

inherent in brains: built-in plasticity. It is possible that closed-

loop computation and plasticity are two of the most critical

features which make brains so efficient. Achieving an under-

standing of the interplay between closed-loop computations and

plasticity is a further challenge.
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